
Computers and Education: Artificial Intelligence 2 (2021) 100029

Available online 24 July 2021
2666-920X/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

A gamified web based system for computer programming learning

Giuseppina Polito, Marco Temperini *

Sapienza University of Rome: Università degli Studi di Roma La Sapienza, Italy

A R T I C L E I N F O

Keywords:
Gamification
Automated assessment
Computer programming learning
Testing

A B S T R A C T

The availability of Automated Assessment tools for computer programming tasks can be a significant asset in
Computer Science education. Systems providing such kind of service are built around an interface, allowing to
administer the tasks (exercises to train programming skills), and show the results, accompanied by meaningful
feedback. To produce such results, they apply techniques ranging from static analysis of program correctness, to
testing-based evaluation. These systems can also support Competitive Programming, which is known to have
educational meaning too. We developed the 2TSW system, supporting the automated correction of computer
programming tasks, in a gamified web-based environment. The system let the student access a list of assignments
(programming tasks), submit solutions to them, and have such solutions tested and graded. Accomplished tasks
let the student gain experience points, represented also by medals, recognition of mastery on a topic, and im
provements on a personal characterization of the student’s status. The personal profile allows the student to
monitor her/his proceedings and achievements. The gamified structure of the system, together with the avail
ability of real-time automated assessment, offers the opportunity for an increasing level of students’ personal
engagement and motivation. Here we describe the system, and report on an experimentation, where students of a
Bachelor Programme in Computer Engineering, first year, used 2TSW. In particular, we 1) present findings about
the students’ feedback, coming from a questionnaire administered after the experience, and 2) provide the reader
with an analysis of the participation data, based on simple statistic tests. The students’ feedback let us conclude
that they appreciated the 2TSW gamified experience, perceived the system as useful, and maintained a high level
of engagement. The data analysis allowed for less decisive conclusions, although it showed proof of the effec
tiveness of the system as a learning aid.

1. Introduction

Learning Computer Programming can be a though matter. It is well
known, for instance, that Higher Education students, even in Study
Courses where programming is an essential skill (such as Computer
Science and Engineering) have a hard time learning and training the
principles, as well as being able to put them skillfully at work (Du et al.,
2016). The reason might be in an impatient attitude of young genera
tions, expecting quick results out of quick interaction. We are not
arguing on this aspect; rather we notice that a great deal of responsibility
is in the application of traditional teaching methodologies, insufficient
to deal with the problem (Agapito & Rodrigo, 2017; Venter, 2020).

Technology Enhanced Learning (TEL) is the field where new tech
nologies are considered, and new methodologies are studied for their
application, with the aim to overcome the above mentioned limitations.

In this paper we deal with two important aspects of research in TEL,
namely the use of Gamification, to improve the learning experience in

Programming courses, and the application of Automated Assessment
techniques, to provide timely feedback for the learners’ solutions (pro
grams) to programming problems.

The use of Automated Assessment of programs is important in
Computer Science education, as it multiplies the opportunities for the
students to perform programming training, and to increase their pro
gramming skills (Ala-Mutka, 2005), while reducing the teacher’s
consequent grading burden. Embedded in a learning system, it can 1)
allow for quick evaluation of programming proficiency, 2) make the
evaluation formative, by means of meaningful feedback, and 3) enhance
problem solving skills (Enstrom et al., 2011). Its usefulness is witnessed
by several studies (Brusilovsky & Sosnovsky, 2005; de Souza et al., 2011;
Edwards & Perez-Quinones, 2008; Joy et al., 2005). In addition, the rise
of the Massive Open On-line Courses (MOOCs) generated further inter
est, for the automated assessment technology, its applicability, and
scalability (Pieterse, 2013).

One interesting use of Automated Assessment is also in the field of

* Corresponding author.
E-mail address: marte@diag.uniroma1.it (M. Temperini).

Contents lists available at ScienceDirect

Computers and Education: Artificial Intelligence

journal homepage: www.sciencedirect.com/journal/computers-and-education-artificial-intelligence

https://doi.org/10.1016/j.caeai.2021.100029
Received 1 April 2021; Received in revised form 16 July 2021; Accepted 21 July 2021

mailto:marte@diag.uniroma1.it
www.sciencedirect.com/science/journal/2666920X
https://www.sciencedirect.com/journal/computers-and-education-artificial-intelligence
https://doi.org/10.1016/j.caeai.2021.100029
https://doi.org/10.1016/j.caeai.2021.100029
https://doi.org/10.1016/j.caeai.2021.100029
http://crossmark.crossref.org/dialog/?doi=10.1016/j.caeai.2021.100029&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Computers and Education: Artificial Intelligence 2 (2021) 100029

2

Programming Contest Systems, that support Competitive Programming
(Combéfis & Wautelet, 2014; Dagienė, 2010). These systems make the
participants be contestants, and compete on the solution of a set of
proposed programming tasks. This is not the main aim of a learning
system; however, 1) it makes possible to increase motivation and
engagement, on programming activities, at least for those (possibly
many) students having a predisposition to competition, and 2) above all,
it has shown to be effective on learning (Audrito et al., 2012; Blumen
stein et al., 2008; Wang et al., 2011).

On the other hand, to master programming the learner must write
and test programs, solving several programming problems, and maybe
solving a same problem in different ways. This makes engagement a
crucial issue. Engagement can be reduced, if the learner is bored, or if (s)
he lacks motivation, or if (s)he lacks patience, and cannot be distracted
by the wish of getting results in the quickest way.

Gamification has proven helpful for students, to increase motivation,
and to allow gaining and maintaining engagement in training activities
(Deterding et al., 2011; Kapp, 2012; Maia & Graeml, 2015). Basically, a
learning environment is “gamified” through the integration in it of
features that are originated in game environments. Among such ele
ments are the use of experience points, connected to successful learning
activities; the provision for fast feedback; the use of achievements, as
well as levels of experience and badges, to allow the learner to trace
her/his progression; the use of leaderboard, also to provide some level of
competition; and the use of quests, to foster a longer term engagement.

This article wishes to contribute to the research area in Computer
Programming Education, in a twofold manner: 1) we will present a web-
based system, called 2TSW, where the use of automated assessment of
programs is provided in a gamified learning environment; and 2) we will
illustrate the results and limits of an experiment we conducted, using
2TSW in a higher Education context (undergraduate course on Com
puter Programming for novices).

In 2TSW, a “Course on Computer Programming” is basically a set of
programming problems, administered by a teacher, and joined by stu
dents. So, in principle, several courses can be active at the same time in
the system, for different classes. Currently the system supports the use of
C programming language only. After login, the leaner can access a set of
programming problems, select one of them, and submit a program as
solution of the problem. For each submission the system executes the
program on several test cases (specified by the teacher while defining
the problem), and returns an assessment page, where the program per
formance is summarized, feedback is given by describing the tests out
comes, and Experience Points (EP) are awarded, depending on the level
of success of the proposed solution. A badge-representation of the
outcome is also awarded (a medal or the “wooden spoon”). A set of
problems ranging over the same topic defines a category, and a category
badge represents the student’s proficiency on the problems met in that
category. The Status of the student is one of the seven profile-badges that
picture the overall performance of the learner in the course. The stu
dent’s profile page shows the personal achievements (EP, badges, sta
tus), and data about the submitted solutions), plus a visual estimate of
the learner’s position in the class (with respect to EP and performance of
the problems solutions).

In the following we will present the 2TSW system, and the experi
ment we performed. In particular, we will present in full the experi
mental data analysis, by which we tried to measure what effectiveness
2TSW has, or is promising to have.

After the experiment we collected participants’ feedback. The
description of the feedback is presented in a conference paper (Polito
et al., 2019), and a complete report would violate the editor rules, so we
will only report the information we gathered from the students’ answers,
without presenting the full analysis.

After this introduction, Sec. 2 offers an overview of related work
available in literature. Then, 2TSW is presented in Sec. 3, while Sec. 4
gives an account of the elements of Gamification that are implemented
in 2TSW, basing on the well-known categorization in (Deterding, 2013).

Before experimenting the system, we wanted to ensure that its
behavior would be reliable and stable. So we devised a simulated
experimentation, with artificial students, whose interactions with the
systems were executed, by us, based on their individual models. The
design and implementation of such simulation is described in another
conference paper (Polito & Temperini, 2018): to avoid violating the
editor rules, Sec. 5 reports in short on this simulated trial. Sections 6,
through 8 describe the experiment we performed. In particular, Sec. 6
presents the data gathering, while Sec. 7 reports on the findings obtained
through the questionnaire administered to the participant students, and
Sec. 8 describes the simple statistical analysis we performed. In Sec. 9 we
discuss some limitations this research can be blamed with, related to the
sample’s quality, and the low amount of available data. We draw some
final remarks in Sec. 10.

2. Related work

This section provides a description of the research work currently
available about the educational use of automated assessment to support
learning activities in programming, and on Gamification applied in
educational contexts, in general. We also report on the uses of Gamifi
cation devised to support computer programming education. To sum
marize we could propose the following observations.

Gamification in education is studied since two decades, basically
starting almost at the same time of the raising of gamification itself. In
fact, it is still intensely studied, and the studies don’t seem to reach
univocal results, about the boundaries, limits, and advantages of it. It
has to be stressed that the majority of the results are positive, however
the topic seems definitely worth of continuing experimental and design
efforts.

In addition, the research activity on the use of advanced technology
to support automated assessment of students’ programs, dates back even
longer, and seems to be expanding. In particular, this research topic
seems to have expanded in the last decade, supported by the developing
web technology. On the other hand, it also seems on the verge of a
further and extensive expansion, happening when the fast progress of
Web Technology, and relatively new tools coming from Artificial Intel
ligence, will be ripe to easily support new advancements. These con
siderations seem to suggest that, for this topic, further research is
expected by the scientific community.

Finally, the use of automated assessment in a gamification context is
more seldom studied, and this might support the usefulness of the work
presented in this paper.

2.1. Automated assessment of computer programs in education

Various kinds of automated support to programming education are
met in research, since decades. Work on such topic is, for instance,
described in (Hollingsworth, 1960). The widest area of investigation
seems to be related to introductory programming courses, where stu
dents learn to write programs, according to a programming language
syntax and semantics, and to solve problems (Gupta & Dubey, 2012;
Hristova et al., 2003; Ala-Mutka, 2005; Pieterse, 2013).

In program assessment, errors may be uncovered basically by means
of two types of program analysis. The first type is the Static Analysis, that
produces its feedback without executing the program. Here the analysis
is based on an examination of the program’s syntax and static semantics.
Approaches of this type can be based on compiler error detection, error
explanation (Hristova et al., 2003; Watson et al., 2012), structured
similarity between marked and unmarked programs (Naudé et al.,
2010), and also nonstructural analysis, with plagiarism detection and
keyword search (Khirulnizam & Md, 2007). The second type of analysis
works on the dynamic semantics, and possibly on the logic, of the pro
gram. It points out errors by means of testing. This means that the
program is not examined looking at the code, but rather running it over
particular sets of input data, specially devised to unveil problems; then

G. Polito and M. Temperini

Computers and Education: Artificial Intelligence 2 (2021) 100029

3

the output, obtained through the execution, is compared with the one
that would be expected from a correct program. Competitive learning
tools, used to manage Programming Contests (Leal & Silva, 2003), are
based on this kind of analysis. Notably, Wang (2011) combines the two
approaches: before performing dynamic testing, the program undergoes
static analysis, where compilation errors, and similarity with “model
programs”, are checked.

Contest Management Systems are dedicated to competitive pro
gramming, rather than focusing on the formative aspects. However,
these systems can be used to support learning, introducing competition
in the learning process. Indeed, contests are an active field of research
also for the good return on competence that a competitive learning ac
tivity can foster for the students (Combéfis & Wautelet, 2014; Dagienė,
2010; Garcia-Mateos & Fernandez-Aleman, 2009). On the other hand,
competition can in turn be a negative spur for students, conducive to
diminished engagement, especially when the system is used on a
voluntary self-assessment basis by the students, who might dislike the
idea of a continuous comparison with their peers.

In (Brusilovsky & Sosnovsky, 2005), an approach to the evaluation of
student’s programming knowledge is based on a different perspective:
the student’s proficiency is measured as the ability to answer
“code-execution questions”. The student is exposed to questions; each
question is related to a code fragment, and to an expression to be eval
uated. Then, the answer regards the value of the expression after the
execution of the code. Joy (2005) describes the BOSS online submission
and assessment system. BOSS is a composite system, able to receive
programming solutions by students and to apply them a collection of
predefined tests. BOSS has also subsystems dealing with privacy, safe
execution, and plagiarism detection for the solutions. In (Enstroem et al.,
2011) the system Kattis is described. It is deemed to propose students
with programming exercises, and grade the solutions. The exercises
represent a means for both practicing programming, and reasoning
about theoretical aspects. Kattis is also used to support programming
competitions (such as the ACM-ICPC finals). From an architectural point
of view, Kattis is a client-server application, accessible via web. Once a
student has submitted a solution to a programming problem, the “judge
sub-system” elaborate a “judgement”, by applying the code on secret
tests. The “verdict” is then released to the student.

The research in (Gupta and Dubey, 2012), adds to the field of
assessment through static-analysis, presenting an enrichment of the
program testing technique, based on program verification.

A differently constructive approach to learning is the one based on
Test Driven Development (TDD). In this case the development of a suite
of test for a student’s submission is asked to the student itself (and then
those test can be integrated with teacher’s additional tests). This prac
tice can be beneficial for students in a programming course, as shown in
Edwards (2003; 2008). The use of tests provided by students is also in
(de Souza et al., 2011), where the assessment is corroborated by
teacher-provided reference tests and solutions.

An innovative method to produce automated assessment of a stu
dent’s program is presented in (Conejo et al., 2018), where the program
undergoes a series of pre-defined tests, and a list of responses is pro
duced. The reponses are booleans or more articulated grade values.
Then, the string of responses is used by the scoring process, based on the
application of two assessment theories (the Classical Test Theory, and
the Item Response Theory). The responses are basically representing
items of interest of the program to be evaluated. The scoring results are
shown (to students and teachers) through a set of interfaces that func
tion as a kind-of dashboard. The items are defined by the teacher, while
authoring the “exercise”. Such items can be related to various aspects of
the program (static-syntactic features, dynamic-run-time performance,
and also the complexity of algorithm coded by the program). So the
items can be quite fine-grained, providing rich feedback that can be
complex to read for the student, while as well effective for formative
assessment.

A practical approach to computer programming education, is sought

in (Queirós, 2019), with the idea that solving programming problems,
and having the proposed solution assessed by means of tests, is the key to
effective training on programming. In a landscape of automated
assessment systems, and problems repositories, that are mostly stand
alone and poorly interoperable, this work proposes an architectural
framework where services can be orchestrated, to provide all the
necessary functionalities to support a course, such as the problems
retrieval, the individual modeling, the adaptation of the offered learning
activities, and the automated assessment of programs. The paper also
foresees the use of such an architecture for an actual course: this
application would consist of the use of the architectural features
described in the paper, and in their integration with the interfaces and
gamification features needed to complete the support to the course. The
idea is that each course could quasi-easily implement its specific gami
fied approach. Due to the mainly architectural interest, the paper does
not provide an actual application of gamification, which is foreseen as
future work.

2.2. Gamification for education

Gamification is recognized as a very significant methodology, suit
able to foster motivation and engagement in students. Its results are
widely appreciated (Sailer et al., 2017; van Roy & Zaman, 2018), and
sometimes challenged (Domínguez et al., 2013), which makes it a live
and progressing research field. The literature review in (Koivisto &
Hamari, 2019) examined a wealth of articles, dedicated to various fields.
It provided a thorough set of research directions. Among the notable
conclusions, the review pointed out that most of the controlled experi
mental works (of which the majority was in Education) gave rather
mixed than thoroughly positive results. Such results were in terms of
factors such as motivation, engagement, enjoyability, perceived effec
tiveness, participation, and number of tasks accomplished (NB not
necessarily programming tasks). Quoting from the conclusions, gamifi
cation is not a silver-bullet type of solution for achieving positive results and
success, in either the research sphere, or in practice (Koivisto & Hamari,
2019). Recently (Gomez, 2020), presented an interesting description of
processes of gamification of the class context, which may make it
simpler for teachers to gamify their courses. The conclusions of the
article were in that efforts should be made to further work on the
application of gamification in education, and on the methodologies to
apply it to courses.

2.3. Gamification for programming education

Regarding the application of Gamification to programming educa
tion, there are several initiatives reported in literature. The works in
(Elbaum et al., 2007) and (Fraser, 2017) show examples of Gamification
applied in the educational area of Software Testing (Fotaris et al., 2015).
presents a study where a gamified quiz system was offered for use by
students of a university course in basic programming. The treated stu
dents appeared to have increased their willingness to attend the course,
and the consequent grading results. No automated assessment of pro
gramming submissions was included in the system (not necessary for the
quiz-format of the students’ tasks).

(Piteira et al., 2018) elaborates on the need to keep working on the
application of gamification in computer programming education. The
paper proposes a selection of gamification principles and features, and
describes their application to an on-line course. It presents mainly
methodological or architectural contributions, regarding the students’
interest and approval of the gamification features. So, the methods to
assess learning are not of specific interest there, and are not described in
deep. Similarly, the use of an automated assessment mechanism for the
programs is not implied.

In (Kasahara et al., 2019) the authors present an analysis of how the
Cyclomatic Complexity of the students’ code resulted improved, in a
Gamified environment. In this paper the Cyclomatic Complexity was

G. Polito and M. Temperini

Computers and Education: Artificial Intelligence 2 (2021) 100029

4

taken as a measure of goodness for the code, and used to infer a better
engagement: as long as these assumptions are correct, the results of the
experience are fairly good.

An application of principles of gamification, such as medals (badges)
and leaderboard, in a system proposing programming challenges to
teams of students, is described in (Rojas-López et al., 2019). The chal
lenges are presented through narration, to foster engagement. In this
system the analysis of the students’ submissions is done by the teachers,
based on a checklist; so no automated tool provides feedback/grading of
learner’s programming artifacts.

(Layth Khaleel et al., 2019) experimented the use of gamification
features for a web-based system supporting computer programming
learning at a novice level. The system administers tests (quizzes) and
evaluate the learner’s comprehension of basic concepts. The quizzes
may contain fragments of programs, but the system does not support
student’s submission of programs and the related automated
feedback/grading.

An experimental application of elements of gamification (such as
leaderboard, challenges, tournament) in a programming class, is pre
sented in (Figueiredo & García-Peñalvo, 2020), where good results are
reported on attendance to classes, participation, and reduction of fail
ure. The students showed good appreciation of the opportunity, and also
proposed some warnings. Evaluations and awarding of points were
managed by the teachers, and no automated grading system was applied
to computer programs.

The recent review of literature in (Venter, 2020) offers an analysis of
research initiatives specifically focusing on the application of gamifi
cation to programming courses, in Higher Education, published in the
period 2014–2019. The review found 21 papers to examine, of which 17
were applying actual implementations of Gamification. The majority of
such studies used new implementations of gamified systems, rather than
adopting existing gamified platforms (such as www.codingame.com,
KhanAcademy.org, or Kahoot!). Among the findings, we might under
line two main aspects, related to 1) the gamification elements used in the
applications, and 2) the effects on learning. The most used gamification
elements were, by far, Leader Boards, Badges, and Points, as opposed to
scarcely used Avatars and Progress Bars. The effects of gamification
appeared to be usually positive for engagement, but quite mixed for
“Programming Knowledge”. We assume that “Programming Knowl
edge” is the category where programming skills fall, so these final results
seem not very positive.

2.4. Can automated assessment and gamification collaborate for
programming education?

From the previous subsection we can conclude that systems, where a
gamified environment for programming training is enriched with
automated assessment technology, are not frequently studied. From
studies of the past we might also take the warning about even the very
use of assessment, automated or not, in a gamified educational system:
sometimes it is associated to other potentially stress-inducing features
(such as the Peer-Versus-Peer engagement, or the organization of
Tournaments among the students), as capable of harming the student’s
engagement, when not accompanied by a timely and enlightening
feedback (Fotaris et al., 2015; Lee et al., 2013). So, considering the
scarcity of application, and the need to study effects and potential
problems, it seems reasonable to work on this kind of systems.

During the development of our 2TSW initiative, we experienced
difficulties to approach the task by just adopting already existing sys
tems. The reasons for that are twofold: On the one hand, using a system
that was developed to cover the needs of a specific higher education
course/university, can be difficult: we found that existing experimental
systems may too narrowly frame our activities; there might even be
hardware/software problems, when the local technological, logistic, and
personnel framework could not easily be adapted to the needs of the
system. Moreover, we also had to deal with possible language problems

of the students (all the available systems are of course developed in
English).

Eventually, we developed the idea of 2TSW as a tool to be used in the
specific environment of our Faculty’s classes, having also in mind the
need to offer a solution in the local language. Moreover, we wished to
offer the students a system where, at least for the overall “status” of the
user proficiency (a part of the student profile), a more compelling
characterization was used, than the traditional “medal” approach.
Indeed, we used medals for the single exercise report, and quite tradi
tional badges for the “categories” of similar exercises; but we also
intended to use a more personal label for the individual general profi
ciency, based on the consideration (derived from experience) that a “fun
aspect” can be appreciated by the students, tickle their curiosity, and
eventually keep them at doing exercises.

3. The 2TSW system

As mentioned earlier, in 2TSW the teacher can be administrator of a
“course”, which is basically a set of programming problems available to
the enrolled students. Fig. 1 shows the list of programming problems
(also called Programming Tasks in 2TSW) available to a student (stud1)
in the “C_8” course. Several courses for programming training can be
managed in 2TSW: in Fig. 1 the course’s identifier and name are in a
kind-of box, which is an active element of the page (a select input
element). Such select element gives access to the other courses which the
student is enrolled in.

When a student submits a program (to solve a problem), the solution
is tested, by using unit testing, and the feedback is shown to the student
(Fig. 2).

A programming task is related to a specific topic of interest. The tasks
related to a same topic are grouped under the topic’s category. For
instance, in course C_8 there is a category Usage of Reference Pointers,
collecting all the exercises available to train on the use of pointers in C
programming. For each task, the solution can grant the submitting stu
dent with an amount of Experience Points, depending on the difficulty
and the level of completeness of the solution. Such amounts are stated by
the teacher, while defining the programming task in the system.

A task-related medal is awarded to the student, if the solution is
successful. Gold/Silver/Bronze medals are awarded, depending on the
quality of the solution. Unsuccessful solutions are awarded with the
Wooden Spoon. Fig. 2 shows a bronze medal, associated to the com
ments given to the student after testing her/his solution.

In relation to the evaluation of a submitted task, Fig. 3 shows the
feedback received after a successful evaluation. In particular, a detail is
shown about the level bars that allow the student to measure the dis
tance of her/his solution from the best solution, and to see the level of
performance in this task with respect to the other leaners
(anonymously).

The panoply is the representation of the student’s profile. Fig. 4
shows a student’s panoply: the student’s Status (see below) is visible,
together with the results obtained through her/his solutions. Category
Badges show the student’s accomplishments in the various categories,
rendered by labels (Amateur, Beginner, Expert, Champion, or Legend). A
category badge is awarded depending on the ratio between the Experi
ence Points won by solving tasks in that category, and the maximum
available points for those tasks. A student is allowed to submit further
solutions for the same task. Only the last submission is used for the
panoply updates.

The Status of a student is awarded according to the Experience Points
(s)he gained. The statuses badges are shown (except for one) in Fig. 5,
which is a rendering of the Leader Board. The Leader Board allows 1) the
teacher to see through the students’ performances, and 2) the students to
monitor their performances and make comparisons with their peers.

Through the panoply, depending on the privileges, the student and
the teacher can access various levels of details about students. While a
student can access only basic information about another student, (s)he

G. Polito and M. Temperini

http://www.codingame.com
http://KhanAcademy.org

Computers and Education: Artificial Intelligence 2 (2021) 100029

5

can access a detailed presentation of each one of her/his own solutions
(Fig. 6).

A student can also access her/his “trend”, which is a representation
of the curve of her/his performance in time: the trend can be shown in
relation to different aspects:

- about a single task: showing the improvements obtained while
developing several different solutions for that same task (if
available);

- about a category: showing the curve of evolution of the category
badges. This allows to associate the student’s work on tasks of that
category, to the progression of the student’s proficiency on the topic,
toward the current estimated value;

- about the overall status of the student: depicting the evolution of the
student’s status. (This third type of performance curve is the one
actually shown in Fig. 7.

4. Gamification aspects of the 2TSW system

We designed 2TSW also based on categorizations of the Gamification
feature, such as those in (Dicheva et al., 2014; Sillaots, 2014) and
especially (Deterding, 2013). We can summarize as follows, the typical
game elements that are to be considered when gamifying a learning
activity. Please notice that in each point/element we also add consid
erations, about how 2TSW does implement the related concept.

1) The concept of growing grade. Here we use the word “grade” to mean
the representation of proficiency that the students can see in her/his
profile. Well, it is natural to expect that certain actions in the system
might let such grade grow, as well as certain others might make it
decrease. Decreasing would actually inspire a twofold negative
attitude, in the student: on the one hand the dejection due to seeing a

Fig. 1. List of the available programming
tasks (the textual descriptions are irrelevant,
here). Student stud1 is enrolled in course
C_8. The course identifier C_8 is visible in
figure, on top of the web page. Also the
name of the course is visible: “Tecniche della
Programmazione”, which can be translated
as Foundations of Computer Programming.
The icons associated to the tasks say whether
the problem was solved and how by stud1. In
this case three tasks were solved (Gold, Sil
ver, Bronze medals). One task was not suc
cessful (Wooden Spoon). Another task,
among those visible in figure, is yet to do.

Fig. 2. A solution has been submitted, and assessed. Here the feedback is
shown. A medal represents the evaluation (Bronze, Silver, Gold are assigned
depending on the amount of gained Experience Points. The Wooden Spoon
means that the solution was insufficient. For each test performed on the code,
then, the result is shown. The test rationale is described (the actual text is
irrelevant, here), so to provide the student with some matter for reflection, and
self-correction.

Fig. 3. Again on the submission feedback. The silver medal represents a good
performance; the textual comment above the medal provides also an encour
agement to try to make it better. The first bar (green in the picture) shows the
level of the solution with respect to the best possible solution (in this case 13
points were granted, out of 19 maximum. The second (blue) bar provides a
comparison with the peers; in this case the performance is described as “better
that the 20 % of the other learners”.

G. Polito and M. Temperini

Computers and Education: Artificial Intelligence 2 (2021) 100029

6

loss, and on the other hand the avoidance of further attempts to
propose solutions, fearing to increase such loss.

In 2TSW the student tries a new solution only with the intent of
getting better results. If the new solution is worse than the previous, one
can fall back to the better performance. In this way the Experience
Points can only grow, which has a positive effect of encouragement.

2) Provision of extensive feedback. Student’s actions (such as submit
ting a solution in 2TSW) are answered in a predictable and justifiable

way, giving feedback, comments, and possibly encouragement in
response. All the consequences are shown in various ways (board,
badges, graphics) that allow the student to monitor her/his state,
also in comparison with others. This can inspire a positive sense of
competence.

In 2TSW the use of growing experience points, the representation of
the status, the categories and tasks badges, the graphics showing the
progresses, and of course the feedback consequent to the test done on a
submitted solution, support the provision of extensive feedback.

Fig. 4. A student’s panoply (condensed, to
fit into this page): the status (Big Chieftain) is
shown, together with information about the
performance in the categories of tasks. For
each category the level (badge), and the
medals are shown. A medal, or spoon, is
granted for each undertaken task. The longer
bar points out the level of experience points
gathered by the students. The shorter bar
says how the student is positioned in the
class (in this case the students has more
points than the 56 % of her/his peers.

Fig. 5. Fragment of the Leader Board. The Status badges are, in order of programming prowess, Zombie, Common Earthling, Vita_da_mediano (which is a citation
from a song, non-translatable; it just means the dull work of a Middlefield player in football), Big Chieftain, Genius, Supernatural, Deity (no Deity in this instance of
the Leader Board).

Fig. 6. Detailed, visual/textual, presentation of the performance of a student in
a single task (as seen by the student): quality of the solution is shown by the
medal, and by the gained Exp. Points. Beside showing the task’s category, the
output also present the ratio of points gained Vs. maximum available points for
the task (68 % in this case).

Fig. 7. Trend of the Status evolution for a student (Stud10). While using the
system, the student progressed from Zombie to Big Chieftain, quite quickly.
Then paused for some time, and eventually raised to Genius.

G. Polito and M. Temperini

Computers and Education: Artificial Intelligence 2 (2021) 100029

7

3) Nested and progressive challenges. Here the concept is in that the
“challenges” a learner has to face can be met progressively, in a
twofold sense: 1) the major challenges have to be structured in a
sequence, and 2) the individual challenge can also be decomposed in
more short term tasks, so to allow the learner build the solution to a
challenge by solving smaller problems. In this way, at any moment
the learner can see that the challenges can be met in an orderly
manner, and that the solution to a challenge can be produced pro
gressively, by sub-challenges of smaller import. This is expected to
inspire, in the learner, the idea that the current task is doable by her/
his current capabilities, and the next one in sight will be doable as
well, as (s)he, by then, will have developed further capabilities.

In 2TSW the tasks are organized in categories. A category corre
sponds to a (more or less broad) topic, which is met in a series of tasks
associated to that category. This organization brings into 2TSW the logic
of nested and decomposed challenges, where a category is supposed to
be the big challenge, and the tasks play the role of shorter term targets.
In turn the categories could be considered as medium term objectives,
whereas reaching a given, higher, status is interpreted as the long term
challenge.

4) Autonomous Choice. This factor of Gamification means that the
student should have the possibility to select the tasks to meet, rather
than being forced along a fixed path. The possibility to select a task
independently strengthens the sense of self-determination, and al
lows also for self-assessment: one might be pleased to see that the
chosen task was actually solvable, with the current abilities, or (s)he
could be made aware of the fact that the current abilities are not yet
sufficient, and should be sharpened, before trying that task again.

In 2TSW the learner is confronted by a series of categories, of
growing complexity, and (s)he is allowed to start solving task from a
higher category than the first. The categories apply a multiplicative
weight to their tasks’ experience points, according to the difficulty of the
concepts involved in the tasks. In his way, simpler categories add less
points than higher categories. On the other hand, a learner that feels the
need for more repeated training on simpler categories, can work there
longer, in order to cultivate her/his abilities, and become able to meet
the further challenges.

5) Freedom to Fail. This is an element of great success in games. It is
granted when the learner is allowed to fail a task without hard
consequences, or no consequence at all. Failing may lead to further
attempts on the same task, or it may let the learner devise a different
game path toward progresses in the game.

In 2TSW, basically, this aspect is supported by the fact that the
learner is not going to be penalized by submitting wrong solutions. In
the current state of the system, though, there are limitations depending
on the relatively small number of tasks actually available. If the learner
has few tasks to choose from, there aren’t ways to circumvent a task and
get the same experience points elsewhere. We think that this limitation
would be easily overcome, when the system will be populated with
hundreds of tasks, rather than tents.

6) Competition and Collaboration. These are possibly contradictory
concepts, as they are enunciated in (Deterding, 2013). The possibility
to compare one’s own performance with the others’ is allowed quite
extensively in games. In a learning setting, however, it can elicit the
fear of being judged by peers, and so it can have negative effects.
Collaboration can actually co-exist with competition, when there is
the possibility to gain experience, and experience points by teaming
up.

In 2TSW we did not implement aspects of collaboration, and allowed

competition only in that it is supported by the visibility of the Leader
Board. Unfortunately, mechanisms to soothe the fear of comparison with
peers, and of judgement, are not yet implemented in 2TSW.

In the previous points we have recalled a classification of the main
aspects, or elements, that should be considered in a Gamification project
for learning. We think that 2TSW is able to put in practice many of such
elements, and that an experimentation would be worthwhile.

In order to prepare an experimentation, we made an analysis of the
behavior of the system during its use. We thought that a verification, by
means of a simulated experiment, would help see whether the system is
able to accompany the progresses of several students, and correctly
report on them. In the following section we discuss such a simulated
experiment, concluding that the system was ready for use with real
students.

5. A preliminary functional test of 2TSW

After having designed and implemented 2TSW, we wished to test
whether collection and management of data were correct. We decided to
pursue a simulated experiment, trying to feed the system with as real
istic data as possible. To this aim we defined simulated students (sim-
students), and executed, for each one of them, several interactions with
the system (mainly submission of programs). To give structure to the
experiment, and manage to see how the system correctly computed
different profiles for different students, we defined a quite informal sim-
student-model, called typology. A sim-student typology is a couple <
attitude, competence > , where attitude is a label (with value “Challenger”
or “Minimalist”), and competence is another label, with possible values as
“Low”, “Average”, “Good”, or “High”. A Challenger is a student who
tends to retry problems, to solve them better. Challengers are supposed
to aim at the best possible Status, and collect the most valuable medals.
On the contrary, a Minimalist is supposed to do just what is needed to
reach a reasonably good advancement (let’s assume that anything much
higher than Zombie would be enough). Moreover, a Minimalist is not
going to retry a solved problem, if just it was solved sufficiently.

All the details of this experiment are reported in the conference paper
(Polito & Temperini, 2018). Here we provide a summary.

In the experiment we had 10 sim-students, with varied typologies,
enrolled in a course (“C8”), comprised of 11 programming tasks, over 4
categories (reference pointers, array/struct, and data structures table and
linked list). All the sim-students started from Zombie Status. The exper
iment was divided in two phases.

During Phase1 each sim-student behaved according to its initial ty
pology. The quality of the submitted solutions was in agreement with the
competence. For a Challenger the number of submitted solutions would
be 5 or 6, while the number of retried solutions would be 2 or 3. For a
Minimalist the number of submitted solutions would be 3 or 4 (no
resubmissions). At the end of Phase1 the sim-student might likely have
changed Status (depending on the Experience Points awarded to the
solutions). Also, at the end of Phase1 a positive effect of the activity was
assumed on sim-students’ proficiency. So we updated the competence of
the sim-student, making it, in general, slightly better. Notice that we did
not change the attitude component of the typology, as we postulated
that it would not change on a short term. During the second phase, the
same steps of Phase1 were executed, based on the updated typologies.

So, for instance, the following sim-students participated in the
experiment:

- Stud3, with initial typology < Challenger, Average>;
- Stud5, with initial typology < Challenger, Good>;
- Stud8, with initial typology < Minimalist, Average>;
- Stud9, with initial typology < Minimalist, Good>.

We recall here the list of Status labels: Zombie, Common_Earthling,
Vita_da_mediano, Big_Chieftain, Genius, Supernatural, and Deity. The
label Vita_da_mediano was inspired by the title of a popular song. It is not

G. Polito and M. Temperini

Computers and Education: Artificial Intelligence 2 (2021) 100029

8

directly translatable; it just represents the dull work of a Middlefield
player in football).

During Phase1, Stud3 and Stud5 submitted 5 solutions, repeating
two of them (or retrying twice a problem), while Stud8 and Stud9
submitted 3 solutions. At the end of the phase.

- Stud3 raised its Status to Big_Chieftain, and was granted typology <
Challenger, High>;

- Stud5 raised its Status to Vita_da_mediano, and had < Challenger,
Average > typology (actually we managed two sub-levels for
“Average” – see later – and Stud5 raised to the upper sub-level);

- Stud8 raised its Status to (only) Common_Earthling, and its typology
did not change;

- Stud9 raised to Vita_da_mediano, and the typology became < Mini
malist, High>.

During Phase2, with respect to solutions submitted/repeated, the
sim-students maintained the behavior displayed in Phase1. At the end of
the phase, Stud3, Stud5, and Stud9 raised their Status to Genius, while
Stud8 remained a Common_Earthling.

To match solutions and competence for the sim-students’ sub
missions, we adopted the following informal method: when competence
was High, the submission’s Experience Points would be between 80 %
and 100 % of the maximum points defined for the task. If competence
was Good, the points would be between 60 % and 80 %. If competence
was Low, the points would be between 0 % and 20 %. About Average
competence, we defined two sub-levels, granting points either between
20 % and 40 %, or between 40 % and 60 %. During Phase1, Average
competence would grant points only in the first sub-level. Before starting
the Phase 2, however, each sim-student with Average competence was
assigned randomly one of the sub-levels, to simulate the different de
velopments that different students can have in reality.

In conclusion of this section some words should be spent about the
limits of the presented approach to 2TSW testing.

On the one hand, our typologies of sim-students are not coming from
a deep psychological-educational investigation, nor they are supported
by previous experiments managing large amounts of data. In fact, they
were stated based on teaching experience, collected informally, from
laboratory learning activities conducted in previous years. In such ac
tivities the students were requested to answer questions and produce
small pieces of code, and the evaluation was not automated, implying
direct interaction with the teacher. In some of such activities, in
teractions among students were also allowed. Out of these experiences,
we appreciated an array of behaviors, especially with regard to students
that wished to update their answers (to increase their quality), possibly
by several sequential attempts.

On the other hand, we did not wish to perform a formal software
testing process. The aim of the experiment was to feed the system with
quasi-realistic data, and verify how it is able to trace the behavior of the
students, and how the flow of change in the status is in agreement with
the typologies we assigned to the sim-students, and their evolution.

With these limits, we concluded that the outcome of the simulated
experiment showed that the system would be fit to support a truer
experimentation, with real students. Such an experimentation is the
topic of the next section, and of the rest of the paper.

6. Field evaluation: data collection

In this experiment the (real) students were enrolled in a course on
Foundations of Computer Programming, held for the Bachelor in Computer
Engineering at Sapienza University. The 2TSW corresponding course was
comprised of 11 programming tasks, over 4 categories (reference
pointers, array/struct, and data structures table and linked list). It was
basically a copy of the C_8 course used in Sec. 5. Also due to organiza
tional and technical problems, the experiment started only 2 weeks
before of the end of the semester (mid-May), and was then prolonged till

Fall (mid-September). Participation was spread along the mentioned
period, with students enrolling mostly at the beginning. Basically each
individual student used the system for a limited time, weeks at most, due
to the fact that the beginning of the experiment was almost at the end of
the semester, and the whole period of time was not the best one for
participation.

In sum we had 12 students registered, of which only 10 did actually
solve at least some problems. The students were all male, ranging be
tween 19 and 21 years of age.

The participation of the students was totally on a voluntary basis; no
direct gain, on the final exam results, was offered. The only “baits” were
in a set of gadgets (mouse, pen drive, keychain, nice pens) that were
promised to be assigned based on the Leader Board.

A significant information is that, to date, only 9 of the participants
have actually taken the final exam, and the related final grade.

The students, about halfway in the course, were shortly examined in
a colloquium (called Intermediate Exam). So this colloquium was about
the basic notions of programming, met so far: 1) basics of architecture
and number systems; 2) programming with the if and while constructs;
3) defining functions; 4) use of basic types for variables; and 5) use of
arrays. The rest of the course would deal with more advanced pro
gramming, over dynamic data structures.

In Table 1 the participants’ data are shown. In the table, IE is the
mark received after the Intermediate Exam, FG (Final Grade) is the
grade obtained by the student after the final exam, and Exp.P. is the
number of Experience Points gained during the use of 2TSW.

As a matter of fact, the low number of participants in the experiment
denotes a limit of the research work we are presenting. However, we
considered that the overall results of this experience can be suggestive, if
not strongly confirmative, of the system’s effectiveness, and deserving to
be communicated. The reasons for that opinion are in the following two
points:

- the participants’ feedback (as shown in the next section) was quite
satisfactory; the overall 2TSW experience received very high marks,
on all the aspects we investigated;

- the data analysis (reported in Sec.8) shows that 1) considering IE
representative of the population (the students in the class), there is
no significant difference between the sample and the population; and
2) considering FG as variable of interest, all the comparisons between
sample and class show a positive effect for the sample’s members.

We propose some further observations, about the limits of this
research, in Sec. 9.

Table 1
Students participating in the experiment. IE is the grade in the Intermediate
Exam. FG is the grade in the final exam. The last column reports the Experience
Points accumulated during the use of the system. The empty cells in the FG
column corresponds to students that have not yet taken the final exam at the
time of writing this paper. Descriptive data for the sample’s FG are as follows:
mean 28.089, st.dev. 3.063.

Learner’s id. IE FG Exp.P.
a1 30 31.1 301.4
a2 29 29 297.8
a3 28 28 282.8
a4 30 30 267.5
a5 31 32 142.4
a6 30 69.5
a7 25 27.2 117
a8 30 26 81
a9 24 21 19.8
a10 24 0
a11 30 28.5 155.7
a12 26 0

G. Polito and M. Temperini

Computers and Education: Artificial Intelligence 2 (2021) 100029

9

7. Field evaluation: feedback from participants

After the experimentation, we asked the participants to fill in a
questionnaire (reported in Table 2). The method of analysis and the
findings have been presented in a conference paper (Polito et al., 2019),
so in this section we are summarizing them. We intended to collect
feedback on the following 5 respects.

1) “2TSW Experience”: how the experience offered by the experiment
was appreciated by the participants;

2) “Usefulness”: how the participants perceived 2TSW as useful to
improve their programming skills;

3) “Engagement”: what level of engagement the participants experi
enced (as witnessed, for instance, by the availability to repeat the
solution of a problem until perfection, or maximum recognition of
experience points);

4) “Gamification Experience”: how the students appreciated the “gami
fied dimension” of the 2TSW learning experience; and

5) “Openness”: how open the student would be to the perspective of
using other web based systems featuring automated assessment for
different subject matters than programming.

The questionnaire was comprised of 36 questions, and it was avail
able in local language. 29 questions were addressing the above
mentioned aims, while the rest concerned age, sex, name (not manda
tory), whether topics in computer programming were met earlier in high
school (two questions), number of problems solved, and free text ob
servations/hints. We discuss the findings coming from (some of) these
last questions in the last section of this paper. Almost all the questions
had answers in a 5 values Likert scale (expressing a level of agreement
with the sentence reported in the question, from least agreement (1) to
fullest (5). To such a format we had three exceptions. Not all the enrolled
students answered the questions, and eventually, we had 7 responders,
among the active participants.

The overview of the answers tells us that the results were very good.
In particular, if we compute the average of the answers’ average marks,
we get 4.37, which denotes an overall quite positive appreciation by the
responders.

To analyse the questionnaire also with focus on the 5 aspects
mentioned at the beginning of this section, we grouped the questions in
6 categories (two for Gamification Experience), according to the rele
vance of the questions for the categories.

In the following we describe the categories and the related findings,
also explaining what questions are part of what categories.

7.1. 2TSW experience

Here we collected the questions 1, 3, 9, 10, 16, 18, as they help
evaluate how the learning experience was appreciated by the partici
pants, and how a student would like the idea of extending the usage of
2TSW to the whole course time.

We considered the average marks for these questions, and computed
the average of these values. The result is 4.19, which says that the 2TSW-
based learning experience was well endured and liked by the re
sponders. It appeared, though, that the students are somewhat preoc
cupied, by the possibility that an extensive use of 2TSW might be
conducive to a significant increase of workload. However, they show,
not only in this category, a firm availability to use 2TSW all over the
course.

Overall, the experience of use of the system, even discounting the
short period of experimentation, and the preoccupations about possible
increase of workload, was more than positive.

7.2. Usefulness

Here we collected the questions 1, 6, 7, 8, 18, 19, 20, 21, 28 as they
help evaluate how the participants considered 2TSW able to help
improve one’s programming skills.

The average of the average marks is 4.21, which tells us that the
responders considered the system quite useful for the development of
their programming skills, in spite of the mild preoccupation for a
possible increasing workload.

7.3. Engagement

Here we collected the questions 2, 4, 5, 11, 13, 14, 15, 22, 25, 29, as
they help evaluate how the participants were willing to keep trying to
solve the same problem, if the solution produced so far could be
improved, and how available they were to undertake further problems.

The average of the average marks is 4.36, representative of quite a
good result in terms of engagement. In particular, we noticed that 1) the
participants were not feeling tired, during the work on solutions; 2) the
programming work was not usually interrupted after reaching the
minimum result; and 3) boredom, in the interaction with the system, is

Table 2
The 29 main questions. In general, the responder was requested to label each
statement by her/his agreement (1 = strongly disagree, 2 = disagree, 3 =
neutral, 4 = agree, 5 = strongly agree); q26, q28, and q29 are the only excep
tions (and their answer choices are listed in this table).

Q
q1 In my opinion it is important that 2TSW provided me with immediate

feedback about my code
q2 I feel a special satisfaction when my code passes the 2TSW tests
q3 In my opinion 2TSW is reasonably easy to use
q4 When my code passed some of the tests I keep working at it, in order to

enhance it and let it pass all the tests
q5 If my task code is not accepted by 2TSW I feel motivated to look for errors and

fix them
q6 In my opinion 2TSW is helpful improving my programming capabilities
q7 In my opinion 2TSW is helpful forcing me to write better (more correct) code
q8 In my opinion 2TSW is helpful measuring one’s programming capabilities
q9 Using 2TSW was in general a good experience, and constructive
q10 I found in general innovative the mechanics implemented in 2TSW
q11 Before I submit a task solution, I check the code thoroughly for errors
q12 I’d like to participate, in future, in a programming contest, even if tasks might

be tougher
q13 When I work on a programming task I get easily tired
q14 When I work on a task, my aim is to pass the task with as little effort/work as

possible, even if it is not with the best grade
q15 Before sending a solution, I’d like to have that the algorithm was the best I can

come up with
q16 The tasks definitions in 2TSW are adequate
q17 I would like to use systems like 2TSW (where automated assessment of

complex tasks is performed) in other courses
q18 In my opinion, using 2TSW on a regular basis along the course would increase

considerably my workload
q19 In my opinion, using 2TSW on a regular basis along the course would have

given me the opportunity and motivation to do more training on
programming

q20 In my opinion, using 2TSW on a regular basis along the course would have
been beneficial in increasing my programming skills

q21 In my opinion the comments and suggestions coming from 2TSW when a
solution is tested, were useful to improve my solutions

q22 While using 2TSW I felt interested and motivated to catch medals and
category labels and to improve my status

q23 While using 2TSW I’ve have felt in part like participating in a game
q24 I liked, in 2TSW, aspects like the score, the experience points, the personalized

leaderboard, the badges for my accomplishments, and the status
q24 While using 2TSW I’ve have felt in part like participating in a game
q25 While using 2TSW I felt bored
q26 I’ve felt threatened by the possibility to compare my results publicly (by

username) through a leaderboard (Yes/No)
q27 I think that the possibility to look at my results, through a leaderboard, is

beneficial for my motivation and engagement, in using the system and making
my programming capabilities better

q28 Do you perceive that the use of the debugger is now (after the 2TSW
experience) more important than earlier? (Yes/No)

q29 Would you have liked to have more problems available in 2TSW? (“Yes, many
more”, “More or less it’s ok like it is”, “No, they are too many already”)

G. Polito and M. Temperini

Computers and Education: Artificial Intelligence 2 (2021) 100029

10

not at all an issue.

7.4. Gamification Experience

Here we collected the questions that appeared useful to see how the
participants appreciated the “gamified learning experience”. Two as
pects, in this category appeared orthogonal and worth of separate
consideration, so we defined two sub-categories:

- The category Gamification Experience 1 collected the questions 22,
23, 24, 25, with the intent to measure how the student was
perceiving her/his learning activity in a gamified dimension.

- The category Gamification Experience 2 concentrated on one of the
several factors of a gamified approach, the Leader Board. So this
category collects the questions 26, 27.

For the first sub-category the answers show an appreciative feedback
and state (question 25) that the use of the system was not at all boring:
the average value of the average marks was 4.57. In Gamification
Experience 2 the average was 4.72, indicative of the fact that using the
Leader Board was taken very positively, which is in contrast with results
found in many research works - cfr. for instance, (Venter, 2020).

7.5. Openness

This category relates to the learners’ willingness to use a web
application like 2TSW, where automated assessment of learning tasks
was provided. Questions 12, 17, and 18 were included.

The average of the answers’ average marks is 4.24, corresponding to
a good availability of the learners. The answers to question 12 (average
mark 4.57) suggest that the students were enticed by the idea of
participating in a programming contest. The key question (17) had an
average mark equal to 4.86, witnessing a great interest of the learners for
the use of systems providing automated assessments, in general. The
question q18 was one of the few needing a normalization, to be used for
the computation of average marks. In fact, for it a lower mark would
mean a higher satisfaction for the responder. This question had average
mark equal to 2.71, normalized to 3.29. It was added in the current
category as it is related to the expectations of “additional heavy work”,
induced by the possible use of 2TSW all along the course. From the
answers to this question we see that the students are somewhat preoc
cupied of the possible work overload, should a system (or more systems
in different courses) like 2TSW be made mandatory. The value for this
question is, however, still above neutrality, so these preoccupations are
not overwhelming.

8. Analysis of the experimental data

Table 1 showed us that the mean Final Grade of the students in the
sample is 28.089, with standard deviation 3.063. The related data for
the whole class of course students is as follows: mean FG 26.02, and
standard deviation 2.70. So, there is a difference between the class’ FGs
and the sample’s ones. However, this does not necessarily imply an ef
fect of the system on the sample’s members.

To organize an analysis of the available data, and to discern the effect
of the system’s use, we considered a categorization of the students,
based on the IE mark. IE (cfr. Sec. 6) comes from the Intermediate Exam,
hence it gives some measure of the proficiency of the students in initial
topics of the course. In the Intermediate Exam, the students were graded
based on marks going from A+ (top) to D. The whole evaluation grid
was: A+, A, A-, A/B, B+, B, B-, B/C, C+, C, C-, C/D, D+, D, corre
sponding to grades between 31 and 18 (as usual in our country the
university grades have such numeric span, with 31 representing the top
mark: 30 cum laude). The same marks span is used for FG.

We have to point out that there is a component of “encouragement”
in the Intermediate Exam, so the grades were 46 % of the “A" type (A+,

A,A-,A/B), 36 % of “B" type (B+,B,B-,B/C), and 18 % of the remaining
types (only one D).

As mentioned earlier, the experiment involved a sample of 12 stu
dents, on a population of 64 students. At the time of this writing only 9
students in the sample, and 39 among the other students, had taken a
final grade. Hence 9 is the dimension of the sample, and 39 the
dimension of the population, excluding the sample. To have a pre
liminary descriptive analysis of the experimental data, the following
Pearson correlations were computed:

- IE-FG-ALL (between IE and FG, for all the students who made the
final exam);

- IE-FG-A (between IE and FG, limited to the students having an A-type
IE mark);

- IE-FG-B (between IE and FG, limited to the students having a B-type
IE mark);

- IE-FG-A-B (between IE and FG, limited to the students having an A or
a B-type IE mark);

- IE-FG-C-D (between IE and FG, limited to the students having a C or
D-type IE mark);

- IE-FG-SMP (between IE and FG, for the students in the sample)

We also computed two additional correlations related to the sample:

- IE-XP, comparing the proficiency in the intermediate exam and the
performance in the experiment (represented by the experience points
accumulated while using 2TSW);

- XP-FG, comparing the performance in the experiment and the final
exam grade.

The correlations are as follows:

- IE-FG-ALL 0.535
- IE-FG-A 0.619
- IE-FG-A-B 0.441
- IE-FG-B 0.193
- IE-FG-C-D 0.818
- IE-FG-EXP 0.786
- IE-XP 0.566
- XP-FG 0.687

There appears to be a correlation, in general, between the perfor
mance in the intermediate exam and that at the end of the course (IE-FG-
ALL). “B" students appear to be the most unpredictable (IE-FG-B is very
low), while “C" and “D" students have a high correlation between in
termediate and final grade (IE-FG-C-D). As a matter of fact, very few “C”
or “D” students made actually the exam.

The fact that IE-FG-ALL is not very high can be easily explained, by
considering that the most complex topics in the syllabus are inevitably
met in the second part of the course: the student’s performance is not
entirely determined by the situation at the intermediate exam
(fortunately).

The participants in the experiment were mainly “A" students (2/3); if
we consider those that, at the time of writing this paper, had not yet
passed the final exam, A students rise to 78 % (no C or D were found in
the sample). This allows to draw some preliminary conclusions about
the usefulness of 2TSW:

XP-FG is not very high, but it is sufficiently high to say that there is
correspondence between the proficiency in the final exam and the
behavior during the experiment. This is a good result, in our opinion: in
particular, it suggests the possibility to unveil difficulties for students, so
to help the teacher administering remedial activities.

In relation to the effectiveness of 2TSW, as a learning tool, the above
correlations can’t be considered decisive. On the one hand, IE-XP de
notes a correlation between behaviors in the intermediate exam and in
2TSW, which is in line with IE-FG-ALL. At the same time, the behaviors

G. Polito and M. Temperini

Computers and Education: Artificial Intelligence 2 (2021) 100029

11

in 2TSW and in the final exam have a slightly better correlation (XP-FG)
than IE-FG-A: considering the prevalence of “A" students in the sample,
this might suggest that the students exposed to the system actually
gained something, in terms of learning.

There is a clear difference between IE-FG-SMP and IE-FG-ALL, as
well as between the former and IE-FG-A-B: this, however, could not
allow to conclude about the effectiveness of 2TSW, as the sample is
small, and moreover the participation in the system was on a voluntary
basis, so the sample could be biased (for instance, we might just have a
prevalence of students who wanted to take any chance to make pro
gramming exercises, and would have had the same final grades in any
case).

So, we thought that some more light could be shed on the effec
tiveness of the system, by the following simple statistic comparisons,
implemented as single sample Z-tests.

8.1. Statistical analysis of the Experiment’s data

Here we propose some analyses, with the intent to compare the
sample with progressively more homogeneous (to the sample) parts of
the class.

Each analysis is performed on the final grade FG. In order to obtain
the above mentioned homogeneity, we use the classification based on
the IE mark: while we might consider the sample not representative
enough, of the whole class, we might think that it would represent better
the part of the class that had similar IE grades (i.e. the A and B-type
students). In addition, we might reduce (painfully) the sample, to only
those students that got an A-type IE, and compare them with the part of
the class that had such an IE grade too. In this case we have “presumably
good” students compared, and we might accept that the sample’s stu
dents had an effect after all, with respect to equally good (or even better)
students who did not use 2TSW.

With the above explained line of thought, we first performed a test,
having IE as variable of interest, to see whether there are significant
differences between the sample and the population. In this test we
limited the consideration to the following subsets of sample and
population:

- the sample was reduced from 12 to 9, retaining only the students that
had participated actively in the experiment and had taken the final
exam;

- the population was reduced, by retaining only the students that had
got an IE of type A or B, and had taken the final exam. (Remember
that the students in the sample have only type A or B IE).

The test was two-tailed, with alpha = 0.05. The null Hypothesis was
that there is no significant difference between sample and population.
The population mean, computed over the 34 students with a FG, was
27.63, with sigma 2.10. The sample average, was 28.556, with sigma
2.315.

We had p = 0.186, with z-score 1.322 (smaller than the z-value
1.960), so it was not possible to reject the null hypothesis. Hence, from
the point of view of IE, it cannot be stated that there is significant dif
ference between the sample and the population (i.e. the sample could be
considered acceptably representative).

We then performed the following tests:

1) comparison of sample’s data with class data;
2) comparison of sample’s data with class data, where the class data

was limited to those students that got IE of A or B type;
3) comparison of sample’ data with the class data, where both the

sample and the class data were limited to those students that got IE of
A type;

For all tests we assumed FG as the variable of interest, for which the
mean and standard deviations were computed. For the computations we

used 8 fractional digits, which in the following we will round to 3. The
tests were one-tailed, with alpha = 0.05, and considered the following
Hypotheses:

H0 the experiment had no significant effect: mu ≥ musample
H1 the experiment had significant effect: mu < musamplewhere mu is

the population mean of the FG values, and musample is the related sam
ple’s mean.

8.2. Comparison of Sample’s and class data

The population mean, where 39 students had a FG, was 26.023, with
standard deviation (sigma) 2.698. The sample average over the 9 par
ticipants with FG, was 28.089, with sigma 3.063.

We had p = 0.0109, with z-score 2.297 (greater than the z-value
1.6449), so the null hypothesis was rejected.

8.3. Comparison of Sample’s and class data: only students with A or B-
type IE mark

In this case we cut the population data, excluding the students that
had C or D IE marks. This did not dramatically reduce the number of
elements, as very many of such students had not yet passed the final
exam. The sample remained as in the previous test (the sample’s stu
dents have A or B-type IE marks).

The population mean, where 34 students had a FG, was 26.309, with
sigma 2.431. The sample average over the 9 participants with FG, was
28.089, with sigma 3.063.

We had p = 0.014, with z-score 2.197 (greater than the z-value
1.6449), so the null hypothesis was rejected.

8.4. Comparison of Sample’s and class data: only students with A-type IE
mark

In this case we cut the population data, excluding the students that
had B, C or D-type IE marks. The population mean, where 22 students
had a FG, was 26.614, with sigma 2.737. The sample average (limited to
the 7 participants with FG, and with IE of type A) was 29.229, with
sigma 1.863.

We had p = 0.006, with z-score 2.527 (greater than the z-value
1.6449), so the null hypothesis was rejected. In this case we performed
also a z-test with alpha = 0.01, obtaining that the z-score was greater
than the z-value 2.3263, allowing to reject the null hypothesis as well.

In conclusion of this section we can say that some effects of using
2TSW might have been revealed, with the limitations that we antici
pated, and that we discuss in the next section.

9. Limitations of the presented study

We think that there are two important limitations in the work we
have presented here. One is related to the fact that the participation in
the experiment was totally on voluntary basis. The other limitation is in
the low number of students who participated in the experiment (i.e. the
limited dimension of the sample). In this way, the sample might be not
representative of the population of the students in the course.

To deal with these limitations, we tried to make use of the partial
characterization of the students, provided by the Intermediate Exam. We
designed a test route, based on single sample z-tests, in order to show
that 1) the sample did not have significant differences with the popu
lation (considering only the part of students that had a grade of type A or
B in the Intermediate Exam), and 2) that three comparisons between
sample’s and population’s Final Grade revealed significant differences.

We will have to repeat the experiment, with a new version of 2TSW,
in more suitable and successful conditions, in order to confirm the re
sults of effectiveness that this analysis is suggesting.

G. Polito and M. Temperini

Computers and Education: Artificial Intelligence 2 (2021) 100029

12

10. Conclusions

2TSW is a web based system, presenting the student with a gamified
learning environment where an automated assessment sub-system sup
ports training on computer programming. The Gamification features
available in the system are based on concepts like Badges, Leader Board,
Peers’ Profile Comparison (possibly anonymized).

We reported on the field experimentation that we conducted. We
administered a post-experience questionnaire to the participating stu
dents, on which we conducted a qualitative analysis. From the analysis
we saw that the participants appreciated quite warmly the opportunity
to use a gamified system featuring automated assessment of programs,
and perceived the system as useful to improve their programming skills.
Moreover, the participants showed to be fairly engaged in the solution of
the programming problems, and attracted by the gamified aspects of the
system. Finally, the questionnaire answers revealed a good availability
of the students to the use of systems offering automated assessment of
complex learning activities, as well on programming as on other
disciplines.

We proposed a set of simple statistical analyses of the few data we
had. Such analyses allow us to say that the sample, though limited, was
not significantly different from the population of the class; hence it could
be considered representative of the whole population. About effects on
learning, the presence of some effects of the use of 2TSW was suggested
by the analyses conducted on the Final Grades of the students.

We have also discussed the limits of the present research, which
suggest further experimentation to confirm the results.

In Sec.5 we postponed the discussion about some side questions,
proposed in the questionnaire, that were not directly related to the
analysis conducted in that section. They were 6 questions, and we think
that a discussion about two of them could be useful here. The first
question asked whether the student had studied some of the topics met
during the experiment earlier, in the High School. About this, we saw
that students have had some prior experience, at an elementary level;
one student declared to have had an experience at a level similar to the
one met in the course, on some of the course’s topics. We also had one
student (with 11 problems solved, we say proudly) who had had no
experience at all. The second question was just asking for an open
answer, with notes, hints, or observations inspired by the experience.
Some of the participants provided answers to this question, and we
considered them helpful to define directions for future work. In partic
ular, we received one comment complaining about the solution not being
accepted for unknown reasons, one comment advising that the solution
might be accepted also if the program was not actually a general solution, just
fitting in the specification of a given test. Our intention to work on two
items of future work was strengthened by those answers.

The first item regards the improvement of the system, by the creation
of a sub-system supporting an easy definition of tests. Currently the
definition of a test is quite a laborious task for the teacher. Simplifying
that task would allow to increase more easily the amount of tests
available for a programming problem, and to manage a random selec
tion of a subset of such tests at assessment time.

The second item of future work is planning and implementing a new
experimental activity, allowing to have a more numerous set of students,
working with 2TSW along a longer period of time.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

Agapito, J., & Rodrigo, M. M. (2017). Designing an intervention for novice programmers
based on meaningful gamification: An Expert evaluation. In Proc. 25th int. Conf. On
computers in education (pp. 736–745), 2017.

Ala-Mutka, K. M. (2005). A survey of automated assessment approaches for
programming assignments. Computer Science Education, 15(2), 83–102.

Audrito, G., Demo, G. B., & Giovannetti, E. (2012). The role of contests in changing
informatics education: A local view. Olympiads in Informatics, 6.

Blumenstein, M., Green, S., Fogelman, S., Nguyen, A., & Muthukkumarasamy, V. (2008).
Performance analysis of game: A generic automated marking environment.
Computers & Education, 50(4), 1203–1216.

Brusilovsky, P., & Sosnovsky, S. (2005). Individualized exercises for self-assessment of
programming knowledge: An evaluation of QuizPACK. In J. Ed. Resources in
computing (Vol. 5). ACM, 3.

Combéfis, S., & Wautelet, J. (2014). Programming trainings and informatics teaching
through online contests. Olympiads in Informatics, 8.

Conejo, R., Barros, B., & Bertoa, M. F. (2018). Automated assessment of complex
programming tasks using SIETTE. IEEE Transactions on Learning Technologies, 12(4),
470–484.

Dagienė, V. (2010). Sustaining informatics education by contests. In Teaching
fundamentals concepts of informatics (pp. 1–12). Springer.

Deterding, S. (2013). Gameful design for learning. TD Magazine. . (Accessed July 2013).
Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From game design elements to

gamefulness: Defining “gamification”. In Proc. MindTrek’11 (ACM).
Dicheva, D., Irwin, K., Dichev, C., Talasila, S., & Salem, W. (2014). A course gamification

platform supporting student motivation and engagement. In Proc. IEEE int. Conf. On
web and open access to learning.

Domínguez, A., Saenz-de-Navarrete, J., de-Marcos, L., Fernández-Sanz, L., Pagés, C., &
Martínez-Herráiz, J. J. (2013). Gamifying learning experiences: Practical
implications and outcomes. Computers & Education, 63, 380–392.

Du, J., Wimmer, H., & Rada, R. (2016). “Hour of Code”: Can it change students’ attitudes
toward programming? Journal of Information Technology Education: Innovations in
Practice, 15, 52–73.

Edwards, S. H. (2003). Improving student performance by evaluating how well students
test their own programs. J. Educational Resources in Computing, 3(3).

Edwards, S. H., & Perez-Quinones, M. A. (2008). Web-CAT: Automatically grading
programming assignments. In Proc. ITiCSE. ACM, 328–328.

Elbaum, S., Person, S., Dokulil, J., & Jorde, M. (2007). Bug hunt: Making early software
testing lessons engaging and affordable. In Proc. ACM/IEEE int. Conf (pp. 688–697).
on Software Engineering (ICSE).

Enstrom, E., Kreitz, G., Niemela, F., Soderman, P., & Kann, V. (2011). Five years with
Kattis – using an automated assessment system in teaching. In Proc. FIE conference.
IEEE.

Figueiredo, J., & García-Peñalvo, F. J. (2020). Increasing student motivation in computer
programming with gamification. In Proc. IEEE global engineering education conference.

Fotaris, P., Mastoras, T., Leinfellner, R., & Rosunally, Y. (2015). Who wants to Be a
pythonista? Using gamification to teach computer programming. In Proc. 7th int.
Conference on education and new learning technologies EDULEARN.

Fraser, G. (2017). Gamification of software testing. In Proc. IEEE/ACM 12th int. Workshop
on automation of software testing.

Garcia-Mateos, G., & Fernandez-Aleman, J. L. (2009). Make learning fun with
programming contests. In Transactions on edutainment II (pp. 246–257). Springer.

Gomez, S. A. (2020). Games and gamification in the classroom. In D. Burgos (Ed.),
Radical solutions and eLearning: Practical innovations and online educational technology.
Lecture notes in educational technology series (pp. 101–115). Springer.

Gupta, S., Dubey, S. K., & SIP. (2012). Automatic assessment of programming
assignment. In I. T. C. S. Proc (Ed.), JSE-2012, 315–323. CS & IT-CSCP.

Hollingsworth, J. (1960). Automatic graders for programming classes. Communications of
the ACM, 3(10), 528–529.

Hristova, M., Misra, A., Rutter, M., & Mercuri, R. (2003). Identifying and correcting java
programming errors for introductory computer science students. 3. SIGCSE.

Joy, M., Griffiths, N., & Boyatt, R. (2005). The BOSS online submission and assessment
system. In J. Educational resources in computing (Vol. 5). ACM, 3.

Kapp, K. M. (2012). The gamification of learning and instruction: Game-based methods and
strategies for training and education. John Wiley & Sons.

Kasahara, R., Sakamoto, K., Washizaki, H., & Fukazawa, Y. (2019). Applying
gamification to motivate students to write high quality code in programming
assignments. In Proc. ACM conf. On innovation and technology in computer science
education (pp. 92–98).

Khirulnizam, A., & Md, J. (2007). A review on the static analysis approach in the
automated programming assessment systems. In Proc. Nat. Conf. On software
engineering and computer systems, pahang, Malaysia.

Koivisto, J., & Hamari, J. (2019). The rise of motivational information systems: A review
of gamification research. International Journal of Information Management, 45,
191–210.

Layth Khaleel, F., Sahari Ashaari, N., & Tengku Wook, T. S. M. (2019). An empirical
study on gamification for learning programming language website. Jurnal Teknologi,
81(2).

Leal, J., & Silva, F. (2003). Mooshak. A web-based multi-site programming contest
system. Software: Practice and Experience, 33, 567–581.

Lee, M. J., Ko, A. J., & Kwan, I. (2013). In-game assessments increase novice
programmers’ engagement and level completion speed. In Proc. 9th ACM conference
on computing education research (pp. 153–160).

G. Polito and M. Temperini

http://refhub.elsevier.com/S2666-920X(21)00023-0/sref1
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref1
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref1
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref2
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref2
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref3
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref3
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref4
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref4
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref4
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref5
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref5
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref5
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref6
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref6
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref7
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref7
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref7
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref8
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref8
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref9
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref10
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref10
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref11
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref11
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref11
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref12
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref12
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref12
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref13
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref13
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref13
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref14
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref14
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref15
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref15
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref16
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref16
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref16
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref17
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref17
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref17
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref18
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref18
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref19
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref19
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref19
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref20
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref20
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref21
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref21
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref22
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref22
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref22
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref23
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref23
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref24
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref24
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref25
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref25
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref26
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref26
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref27
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref27
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref28
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref28
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref28
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref28
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref29
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref29
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref29
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref30
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref30
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref30
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref31
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref31
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref31
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref32
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref32
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref33
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref33
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref33

Computers and Education: Artificial Intelligence 2 (2021) 100029

13

Maia, R. F., & Graeml, F. R. (2015). Playing and learning with gamification: An in-class
concurrent and distributed programming activity. In Proc. IEEE frontiers in education
conference.

Naudé, K., Greyling, J., & Vogts, D. (2010). Marking student programs using graph
similarity. Computers & Education, 54, 545–561.

Pieterse, V. (2013). Automated assessment of programming assignments. In , Vol. 13.
Proc. CSERC (pp. 45–56). ACM.

Piteira, M., Costa, C. J., & Aparicio, M. (2018). Computer programming learning: How to
apply gamification on online courses? Journal of Information Systems Engineering and
Management, 3(2), 11.

Polito, G., & Temperini, M. (2018). A Gamified Approach to Automated Assessment of
Programming Assignments. In M. Chang, et al. (Eds.), Challenges and Solutions in
Smart Learning. Lecture Notes in Educational Technology (pp. 3–12). Springer.

Polito, G., Temperini, M., & Sterbini, A. (2019). Automated assessment of computer
programming assignments, in a gamified web based system. In Proc. 18th Int.
Conference on Information Technology Based Higher Education and Training (pp. 1–9).
ITHET.

Queirós, R. (2019). PROud-A gamification framework based on programming exercises
usage data. OR Informatie, 10/2, 1–14.

Rojas-López, A., Rincón-Flores, E. G., Mena, J., Garcia-Penalvo, F. J., & Ramirez-
Montoya, M. S. (2019). Engagement in the course of programming in higher education
through the use of gamification. 18 pp. 583–597). Univ Access Inf Soc.

van Roy, R., & Zaman, B. (2018). Need-supporting gamification in education: An
assessment of motivational effects over time. Computers & Education, 127, 283–297.

Sailer, M., Hense, J. U., Mayr, S. K., & Mandl, H. (2017). How gamification motivates: An
experimental study of the effects of specific game design elements on psychological
need satisfaction. Computers in Human Behavior, 69, 371–380.

de Souza, D. M., Maldonado, J. C., & Barbosa, E. F. (2011). ProgTest: An environment for
the submission and evaluation of programming assignments. In Proc. SEET (IEEE).

Venter, M. (2020). Gamification in STEM programming courses: State of the art. In Proc.
IEEE global engineering education conference (pp. 859–866).

Wang, T., Su, X., Ma, P., Wang, Y., & Wang, K. (2011). Ability-training-oriented
automated assessment in introductory programming course. Computers & Education,
56(1), 220–226.

Watson, C., Li, F., & Godwin, J. (2012). Bluefix: Using crowd-sourced feedback to support
programming students in error diagnosis and repair. In , Vol. 755. Proc. ICWL2012
(pp. 228–239). LNCS. Springer.

G. Polito and M. Temperini

http://refhub.elsevier.com/S2666-920X(21)00023-0/sref34
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref34
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref34
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref36
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref36
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref37
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref37
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref38
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref38
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref38
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref2a
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref2a
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref2a
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref1a
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref1a
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref1a
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref1a
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref39
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref39
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref40
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref40
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref40
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref41
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref41
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref42
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref42
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref42
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref43
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref43
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref44
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref44
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref45
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref45
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref45
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref46
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref46
http://refhub.elsevier.com/S2666-920X(21)00023-0/sref46

	A gamified web based system for computer programming learning
	1 Introduction
	2 Related work
	2.1 Automated assessment of computer programs in education
	2.2 Gamification for education
	2.3 Gamification for programming education
	2.4 Can automated assessment and gamification collaborate for programming education?

	3 The 2TSW system
	4 Gamification aspects of the 2TSW system
	5 A preliminary functional test of 2TSW
	6 Field evaluation: data collection
	7 Field evaluation: feedback from participants
	7.1 2TSW experience
	7.2 Usefulness
	7.3 Engagement
	7.4 Gamification Experience
	7.5 Openness

	8 Analysis of the experimental data
	8.1 Statistical analysis of the Experiment’s data
	8.2 Comparison of Sample’s and class data
	8.3 Comparison of Sample’s and class data: only students with A or B-type IE mark
	8.4 Comparison of Sample’s and class data: only students with A-type IE mark

	9 Limitations of the presented study
	10 Conclusions
	Declaration of competing interest
	References

